KINELLAR SCHOOL

Numeracy Guidance for Parents and Families

KINELLAR

Kinellar School Numeracy Guidance

This document provides some guidance for parents on how number is taught at Kinellar School. We hope that this will assist you in helping your child with their numeracy development.

Should you ever have any questions about the teaching of numeracy in school then please do not hesitate to contact your child's class teacher.

Useful links:
Education City
Top Marks
White Rose Maths
Nrich maths
Maths Frame
BBC bitesize

Kinellar School Numeracy Guidance

Maths Boxes

Kinellar Parent Council kindly funded the purchase of materials to create 'Maths boxes' for each coloured area of the school. Each of these boxes contain a variety of concrete materials which can be used to support children's development in Numeracy.

This is a small selection of some of the resources we have available.

What are concrete materials?

Concrete materials are physical resources that children can handle and manipulate to support their understanding of specific concepts. For this reason, they are sometimes called manipulatives.

Who uses concrete materials?

We encourage the use of concrete materials at all stages across the school. They should not be seen as something a child should 'grow out' of using. We are actively trying to change the way pupils view these as some still feel there is a stigma attached to using them.

They will be used very differently at different stages of Numeracy development. They could be used to support addition or subtraction in the early stages or to solve a problem involving equivalent fractions or percentages in the upper stages. Children are encouraged to use concrete materials to model a complex problem in order to solve it.

Once children are familiar with the concrete elements, they will have the tools and strategies to begin to solve pictorial representations of problems then ultimately, they will use the abstract symbols. The abstract stage involves the use of only numbers, notation and mathematical symbols (+ $-, x, \div)$. Children often find maths difficult because it is abstract. By using concrete materials, it will help develop their number sense and help them to visualise the problems and strategies used to solve them.

Stages of Concrete, Pictorial and Abstract

Counting Strategies

Counting Concrete Items
Encourage children to say a number
as they touch each item.
Total Amount
Knowing that the final number said
is the total amount.
More or Less
which has more or less.
Recognising an amount of items up
to 6 without counting each one.
Identifying Amounts
Recognise and Write
Be able to recognise and write
numbers to 10.
Recognise that a number (digit)
represents an amount.
Before and After
In between given numbers.

Kinellar School Numeracy Guidance

Counting On Counting on from a number greater than 1	$4,5,6,7 \ldots$
Counting Back	$9,8,7,6 \ldots$
Counting back from a number	

Mental Addition Strategies

By Counting		
Adding two groups of items by counting all items one by one.		
By Counting On Adding two groups of items by counting on from the largest number.		
	5	$6,7,8,9$
By Visualising Visualise a number then add an amount to it.		$6,7,8,9$
Number Stories Learn and remember stories of numbers to ten.	Eg. Story of 6 $6+0=6,5+1=6$	$4+2=6,3+3=6$
Partitioning (one number) Breaking one number into smaller numbers, before adding it in stages. This is called partitioning.	$\begin{aligned} & 8+17 \\ = & 8+7+10 \\ = & 15+10 \\ = & 25 \end{aligned}$	$\begin{aligned} & 72+16 \\ = & 72+10+6 \\ = & 82+6 \\ = & 88 \end{aligned}$
Partitioning (Both numbers)		
Split both numbers using Place Value groupings.	$\begin{aligned} & 45+37 \\ = & 40+5+30+7 \\ = & 40+30+5+7 \\ = & 70+12 \\ = & 82 \end{aligned}$	$\begin{aligned} & 437+342 \\ = & 400+30+7+300+40+2 \\ = & 400+300+30+40+7+2 \\ = & 700+70+9 \\ = & 779 \end{aligned}$

Kinellar School Numeracy Guidance

This method can be used for larger numbers too.

Empty Number Line Place the larger number on the left of an empty number line. Use partitioning to split the second number.		

Kinellar School Numeracy Guidance

Friendly Numbers	
Two numbers that add together to make 10 or a multiple or 10.	$\begin{aligned} & 34+26 \\ = & 30+4+20+6 \\ = & 30+20+4+6 \\ = & 50+10 \\ = & 60 \end{aligned}$
Bridging Through 10	$87+9=96$
Use friendly numbers to reach a multiple of 10 when adding.	

Kinellar School Numeracy Guidance

Written Addition Strategies

Column Method - Chimney Sums	
Add each column in the sum working from right to left.	65
	+12
	77
Column Method - Chimney Sums	
Involving carrying Add each column as before. If the total is 10 or more record the units and carry the tens. Place the number you are carrying under the next column. Add this column, remembering to add on any numbers you have carried.	368
	+423
	791
	1
	-
	4536
	+3726
	8262

Mental Subtraction Strategies

By Counting	$\begin{array}{ccc} 5 & -2 & =3 \\ & 0 & \end{array}$	
Count a group of items, remove a set amount then count how many are left.		
Counting Backwards Put the biggest number first then count back.	7-4	$6,5,4,3$
Counting On Start with the smallest number and count on to the biggest number.	$\underbrace{7-4}_{0} 5,6,7$	$\longrightarrow \underline{3}$
Counting Back using Partitioning Partition the smaller number and count back in chunks	$\begin{aligned} & 123-69 \\ = & 123-(20+40+3+6) \\ = & 103-40-3-6 \\ = & 63-3-6 \\ = & 60-6 \\ = & 54 \end{aligned}$	
Reordering As long as the biggest number in the calculation comes first it does not matter the order of the other numbers when subtracting more than one number.	$\begin{aligned} & 25-6-5 \\ & 25(-6)-5 \\ = & 20-6 \\ = & 14 \end{aligned}$	$\begin{aligned} & 25-6-5 \\ & 25-6(-5) \\ = & 19-5 \\ = & 14 \end{aligned}$

	87-49	
Round the number to the closest multiple of 10. Adjust the other number by the same amount. Complete the sum using the 'new' numbers.	$\begin{aligned} & =(87+1)-(49+1) \\ & =88-50 \\ & =38 \\ & \xrightarrow[+1]{49} 50 \end{aligned}$	38 $\xrightarrow[+1]{8788}$
Subtracting Friendly Numbers Use knowledge of friendly numbers to aid subtraction. Remember friendly number are two numbers that add together to make 10 or a multiple or 10.	$\begin{aligned} & 23-3-7-4 \\ & 23-(3+7)-4 \\ & 23-10-4=9 \text { (Can } \\ & 23-10=13 \text { (or bre } \\ & 13-4=9 \end{aligned}$	complete in one step) k it down further)
Compensation Round one of the numbers to the nearest 10. Adjust the final answer accordingly to keep the calculation 'balanced'.	$\begin{aligned} & 79-26 \\ & =(79+1)-26 \\ & =80-26=54 \\ & =54-1 \text { (subtract } \\ & 1 \text { because an } \\ & \text { extra was added) } \\ & =53 \\ & \\ & 81-37 \\ & =(81-1)-37 \\ & =80-37=43 \\ & =43+1 \text { (add } 1 \\ & \text { because an extra } \\ & 1 \text { was subtracted) } \\ & =44 \end{aligned}$	$\begin{aligned} & 87-49 \\ & =87-(49+1) \\ & =87-50 \\ & =37+1 \text { (add } 1 \end{aligned}$ because an extra 1 was subtracted) $=38$ (This is the same as keeping a constant difference) $\begin{aligned} & 95-61 \\ & =95-(61-1) \\ & =95-60 \\ & =35 \\ & =35-1 \text { (subtract } \end{aligned}$ 1 because one less was subtracted)

Kinellar School Numeracy Guidance

Compensation (Subtracting 9)	
Take away 10 from the number	$48-9$
and add 1 back on to the	$48-10=38$
answer.	$38+1=39$

Written Subtraction Strategies

Column method - (Chimney Sums)	
Subtract each column in the sum	
working from right to left. Make	
sure the larger number is on top.	

Mental Multiplication Strategies

Kinellar School Numeracy Guidance

Factoring Numbers	
Breaking down numbers into their factors.	$=6 \times 6 \times 4$
	34×23
Splitting up numbers into friendly numbers or place value.	
Split the first number into tens and units. Multiply the second number by each of these. This number can be broken down again if required.	$\begin{array}{ll} 30 \times 23 & 4 \times 23 \\ 30 \times 20=600 & 4 \times 20=80 \\ 30 \times 3=90 & 4 \times 3=12 \\ 600+90=690 & 80+12=92 \end{array}$
Add the two answers together to give your final answer.	$690+92=782$
Doubling and Halving	
When you double one number in a multiplication problem the other is halved. This process can be repeated several times.	$\begin{gathered} (\div 2) \quad(\times 2) \\ 6 \times 48 \\ (\div 2) \quad(x 2) \\ 3 \times 96 \end{gathered}$

Kinellar School Numeracy Guidance

Written Multiplication Strategies

| Grid Method |
| :--- | :--- | :--- | :--- | :--- |
| Spliting numbers into friendly |
| numbers or place value to break |
| n |
| down larger multiplication |
| problems. |

Kinellar School Numeracy Guidance

Mental Division Strategies

Kinellar School Numeracy Guidance

Written Division Strategies

Short Division	
Short division is a method that works well for dividing by numbers less than 10. Write the calculation as shown then divide into each digit in turn, starting with the first digit, and write each result above it. Then read the digits to get the final answer.	Write each answer along the top of the line: $80 \div 4$ (this could be thought of as) $8 \div 4=2$ $4 \div 4=1$ Then read off the numbers to get the final answer: 21 \qquad 4 84
Short Division - With Remainders If you can't divide a digit exactly, write the remainder in front of the next digit and divide into this new number you have made. If you have a remainder at the end of your calculation, include it in your answer as a remainder.	$98 \div 4$ $9 \div 4=2 r 1$ Write the 1 in front of the $8:$ $18 \div 4=4 r 2$ $24 r 2$ 4 $9^{18} 8$ So, $98 \div 4=24$ r 2
Short Division - with decimal remainders If you can't divide a digit exactly, write the remainder in front of the next digit and divide into this new number you have made. If you have a remainder at the end of your calculation this can be recorded as a decimal.	$98 \div 4$ $\begin{array}{r} 24.5 \\ 4 \quad 9^{18} .^{2} 0 \end{array}$ Insert a decimal point above and below the line. Below the line insert a 0 after the decimal point. This does not change the number. Now use the 2 left over from $18 \div 4$ to make 20. $20 \div 4=5$ $\text { So, } 98 \div 4=24.5$

Kinellar School Numeracy Guidance

Kinellar School Numeracy Guidance

Number Relationships

Addition and Subtraction	
Learn and remember doubles and halves.	
Explore fact families. Use this knowledge to answer addition and subtraction sums.	
Split up a two digit number into tens and ones (units)	$23=20+3$

